Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development.

نویسندگان

  • Knut Biber
  • Makoto Tsuda
  • Hidetoshi Tozaki-Saitoh
  • Keiko Tsukamoto
  • Emika Toyomitsu
  • Takahiro Masuda
  • Hendrikus Boddeke
  • Kazuhide Inoue
چکیده

Up-regulation of P2X4 receptors in spinal cord microglia is crucial for tactile allodynia, an untreatable pathological pain reaction occurring after peripheral nerve injury. How nerve injury in the periphery leads to this microglia reaction in the dorsal horn of the spinal cord is not yet understood. It is shown here that CCL21 was rapidly expressed in injured small-sized primary sensory neurons and transported to their central terminals in the dorsal horn. Intrathecal administration of a CCL21-blocking antibody diminished tactile allodynia development in wild-type animals. Mice deficient for CCL21 did not develop any signs of tactile allodynia and failed to up-regulate microglial P2X4 receptor expression. Microglia P2X4 expression was enhanced by CCL21 application in vitro and in vivo. A single intrathecal injection of CCL21 to nerve-injured CCL21-deficient mice induced long-lasting allodynia that was undistinguishable from the wild-type response. This effect of CCL21 injection was strictly dependent on P2X4 receptor function. Since neuronal CCL21 is the earliest yet identified factor in the cascade leading to tactile allodynia, these findings may lead to a preventive therapy in neuropathic pain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P2X4 receptors and neuropathic pain

Neuropathic pain, a debilitating pain condition, is a common consequence of damage to the nervous system. Neuropathic pain is often resistant to currently available analgesics. A growing body of evidence indicates that spinal microglia react and undergo a series of changes that directly influence the establishment of neuropathic pain states. After nerve injury, P2X4 receptors (P2X4Rs) are upreg...

متن کامل

Neuronal CC chemokines: the distinct roles of CCL21 and CCL2 in neuropathic pain

The development of neuropathic pain in response to peripheral nerve lesion for a large part depends on microglia located at the dorsal horn of the spinal cord. Thus the injured nerve initiates a response of microglia, which represents the start of a cascade of events that leads to neuropathic pain development. For long it remained obscure how a nerve injury in the periphery would initiate a mic...

متن کامل

Transcription factor IRF5 drives P2X4R+-reactive microglia gating neuropathic pain

In response to neuronal injury or disease, microglia adopt distinct reactive phenotypes via the expression of different sets of genes. Spinal microglia expressing the purinergic P2X4 receptor (P2X4R) after peripheral nerve injury (PNI) are implicated in neuropathic pain. Here we show that interferon regulatory factor-5 (IRF5), which is induced in spinal microglia after PNI, is responsible for d...

متن کامل

Paroxetine Attenuates the Development and Existing Pain in a Rat Model of Neurophatic Pain

Background: P2X4 receptor (P2X4R), a purinoceptor expressed in activated spinal microglia, plays a key role in the pathogenesis of neuropathic pain. Spinal nerve injury induces up-regulation of P2X4R on activated microglia in the spinal cord, and blockade of this receptor can reduce neuropathic pain. The present study was undertaken to determine whether paroxetine, an inhibitor of P2X4R, could ...

متن کامل

Purinergic signaling in microglia in the pathogenesis of neuropathic pain

Nerve injury often causes debilitating chronic pain, referred to as neuropathic pain, which is refractory to currently available analgesics including morphine. Many reports indicate that activated spinal microglia evoke neuropathic pain. The P2X4 receptor (P2X4R), a subtype of ionotropic ATP receptors, is upregulated in spinal microglia after nerve injury by several factors, including CC chemok...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 30 9  شماره 

صفحات  -

تاریخ انتشار 2011